Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Allergy ; 78(3): 639-662, 2023 03.
Article in English | MEDLINE | ID: covidwho-20233683

ABSTRACT

The current monkeypox disease (MPX) outbreak constitutes a new threat and challenge for our society. With more than 55,000 confirmed cases in 103 countries, World Health Organization declared the ongoing MPX outbreak a Public Health Emergency of International Concern (PHEIC) on July 23, 2022. The current MPX outbreak is the largest, most widespread, and most serious since the diagnosis of the first case of MPX in 1970 in the Democratic Republic of the Congo (DRC), a country where MPX is an endemic disease. Throughout history, there have only been sporadic and self-limiting outbreaks of MPX outside Africa, with a total of 58 cases described from 2003 to 2021. This figure contrasts with the current outbreak of 2022, in which more than 55,000 cases have been confirmed in just 4 months. MPX is, in most cases, self-limiting; however, severe clinical manifestations and complications have been reported. Complications are usually related to the extent of virus exposure and patient health status, generally affecting children, pregnant women, and immunocompromised patients. The expansive nature of the current outbreak leaves many questions that the scientific community should investigate and answer in order to understand this phenomenon better and prevent new threats in the future. In this review, 50 questions regarding monkeypox virus (MPXV) and the current MPX outbreak were answered in order to provide the most updated scientific information and to explore the potential causes and consequences of this new health threat.


Subject(s)
Monkeypox virus , Monkeypox , Child , Female , Humans , Pregnancy , Disease Outbreaks , Monkeypox/diagnosis , Monkeypox/epidemiology
2.
SAGE Open Med ; 10: 20503121221115483, 2022.
Article in English | MEDLINE | ID: covidwho-1986716

ABSTRACT

Objective: The COVID-19 corona virus disease outbreak is globally challenging health systems and societies. Its diagnosis relies on molecular methods, with drawbacks revealed by mass screening. Upregulation of neutrophil CD64 or monocyte CD169 has been abundantly reported as markers of bacterial or acute viral infection, respectively. We evaluated the sensitivity of an easy, one-step whole blood flow cytometry assay to measure these markers within 10 min, as a potential screening test for COVID-19 patients. Methods: Patients (n = 177) with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were tested on 10 µL blood and results were compared with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Results: We observed 98% and 100% sensitivity in early-stage (n = 52) and asymptomatic patients (n = 9), respectively. Late-stage patients, who presented for a second control RT-qPCR, were negative for both assays in most cases. Conversely, neutrophil CD64 expression was unchanged in 75% of cases, without significant differences between groups. Conclusion: Monocyte CD169 evaluation was highly sensitive for detecting SARS-CoV-2 infection in first-presentation patients; and it returns to basal level upon infection clearance. The potential ease of fingerprick collection, minimal time-to-result, and low cost rank this biomarker measurement as a potential viral disease screening tool, including COVID-19. When the virus prevalence in the tested population is usually low (1%-10%), such an approach could increase the testing capacity 10 to 100-fold, with the same limited molecular testing resources, which could focus on confirmation purposes only.

3.
J Infect Dis ; 224(3): 395-406, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338702

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) clinical expression is pleiomorphic, severity is related to age and comorbidities such as diabetes and hypertension, and pathophysiology involves aberrant immune activation and lymphopenia. We wondered if the myeloid compartment was affected during COVID-19 and if monocytes and macrophages could be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Monocytes and monocyte-derived macrophages (MDMs) from COVID-19 patients and controls were infected with SARS-CoV-2 and extensively investigated with immunofluorescence, viral RNA extraction and quantification, and total RNA extraction followed by reverse-transcription quantitative polymerase chain reaction using specific primers, supernatant cytokines (interleukins 6, 10, and 1ß; interferon-ß; transforming growth factor-ß1, and tumor necrosis factor-α), and flow cytometry. The effect of M1- vs M2-type or no polarization prior to infection was assessed. RESULTS: SARS-CoV-2 efficiently infected monocytes and MDMs, but their infection is abortive. Infection was associated with immunoregulatory cytokines secretion and the induction of a macrophagic specific transcriptional program characterized by the upregulation of M2-type molecules. In vitro polarization did not account for permissivity to SARS-CoV-2, since M1- and M2-type MDMs were similarly infected. In COVID-19 patients, monocytes exhibited lower counts affecting all subsets, decreased expression of HLA-DR, and increased expression of CD163, irrespective of severity. CONCLUSIONS: SARS-CoV-2 drives monocytes and macrophages to induce host immunoparalysis for the benefit of COVID-19 progression.SARS-CoV-2 infection of macrophages induces a specific M2 transcriptional program. In Covid-19 patients, monocyte subsets were decreased associated with up-expression of the immunoregulatory molecule CD163 suggesting that SARS-CoV-2 drives immune system for the benefit of Covid-19 disease progression.


Subject(s)
COVID-19/immunology , Macrophages/virology , Monocytes/virology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Cytokines/metabolism , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Respiratory Distress Syndrome/immunology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/immunology , Severity of Illness Index , Young Adult
5.
J Infect Dis ; 222(12): 1985-1996, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-1059699

ABSTRACT

BACKGROUND: An unbiased approach to SARS-CoV-2-induced immune dysregulation has not been undertaken so far. We aimed to identify previously unreported immune markers able to discriminate COVID-19 patients from healthy controls and to predict mild and severe disease. METHODS: An observational, prospective, multicentric study was conducted in patients with confirmed mild/moderate (n = 7) and severe (n = 19) COVID-19. Immunophenotyping of whole-blood leukocytes was performed in patients upon hospital ward or intensive care unit admission and in healthy controls (n = 25). Clinically relevant associations were identified through unsupervised analysis. RESULTS: Granulocytic (neutrophil, eosinophil, and basophil) markers were enriched during COVID-19 and discriminated between patients with mild and severe disease. Increased counts of CD15+CD16+ neutrophils, decreased granulocytic expression of integrin CD11b, and Th2-related CRTH2 downregulation in eosinophils and basophils established a COVID-19 signature. Severity was associated with emergence of PD-L1 checkpoint expression in basophils and eosinophils. This granulocytic signature was accompanied by monocyte and lymphocyte immunoparalysis. Correlation with validated clinical scores supported pathophysiological relevance. CONCLUSIONS: Phenotypic markers of circulating granulocytes are strong discriminators between infected and uninfected individuals as well as between severity stages. COVID-19 alters the frequency and functional phenotypes of granulocyte subsets with emergence of CRTH2 as a disease biomarker.


Subject(s)
COVID-19/immunology , Granulocytes/immunology , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Adult , Aged , Biomarkers/metabolism , CD11b Antigen/immunology , COVID-19/blood , COVID-19/diagnosis , Female , France , Humans , Immunophenotyping , Leukocyte Count , Lymphocytes/immunology , Male , Middle Aged , Monocytes/immunology , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
6.
Expert Rev Clin Immunol ; 16(12): 1159-1184, 2020 12.
Article in English | MEDLINE | ID: covidwho-1032979

ABSTRACT

Introduction: COVID-19 presents benign forms in young patients who frequently present with anosmia. Infants are rarely infected, while severe forms occur in patients over 65 years of age with comorbidities, including hypertension and diabetes. Lymphopenia, eosinopenia, thrombopenia, increased lactate dehydrogenase, troponin, C-reactive protein, D-dimers and low zinc levels are associated with severity.Areas covered: The authors review the literature and provide an overview of the current state of knowledge regarding the natural history of and therapeutic options for COVID-19. Expert opinion: Diagnosis should rely on PCR and not on clinical presumption. Because of discrepancies between clinical symptoms, oxygen saturation or radiological signs on CT scans, pulse oximetry, and radiological investigation should be systematic. The disease evolves in successive phases: an acute virological phase, and, in some patients, a cytokine storm phase; an uncontrolled coagulopathy; and an acute respiratory distress syndrome. Therapeutic options include antivirals, oxygen therapy, immunomodulators, anticoagulants and prolonged mechanical treatment. Early diagnosis, care, and implementation of an antiviral treatment; the use of immunomodulators at a later stage; and the quality of intensive care are critical regarding mortality rates. The higher mortality observed in Western countries remains unexplained. Pulmonary fibrosis may occur in some patients. Its future is unpredictable.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 , SARS-CoV-2/metabolism , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/epidemiology , COVID-19/therapy , Female , Humans , Male , Risk Factors , Severity of Illness Index
7.
Front Microbiol ; 11: 597529, 2020.
Article in English | MEDLINE | ID: covidwho-1000110

ABSTRACT

BACKGROUND: The SARS-CoV-2 outbreak has emerged at the end of 2019. Aside from the detection of viral genome with specific RT-PCR, there is a growing need for reliable determination of the serological status. We aimed at evaluating five SARS-CoV-2 serology assays. METHODS: An in-house immunofluorescence assay (IFA), two ELISA kits (EUROIMMUN® ELISA SARS-CoV-2 IgG and NovaLisa® SARS-CoV-2 IgG and IgM) and two lateral flow assays (T-Tek® SARS-CoV-2 IgG/IgM Antibody Test Kit and Sure Bio-tech® SARS-CoV-2 IgM/IgG Antibody Rapid Test) were compared on 40 serums from RT-PCR-confirmed SARS-CoV-2 infected patients and 10 SARS-CoV-2 RT-PCR negative subjects as controls. RESULTS: Control subjects tested negative for SARS-CoV-2 antibodies with all five systems. Estimated sensitivities varied from 35.5 to 71.0% for IgG detection and from 19.4 to 64.5% for IgM detection. For IgG, in-house IFA, EuroImmun, T-Tek and NovaLisa displayed 50-72.5% agreement with other systems except IFA vs EuroImmun and T-Tek vs NovaLisa. Intermethod agreement for IgM determination was between 30 and 72.5%. DISCUSSION: The overall intermethod agreement was moderate. This inconsistency could be explained by the diversity of assay methods, antigens used and immunoglobulin isotype tested. Estimated sensitivities were low, highlighting the limited value of antibody detection in CoVID-19. CONCLUSION: Comparison of five systems for SARS-CoV-2 IgG and IgM antibodies showed limited sensitivity and overall concordance. The place and indications of serological status assessment with currently available tools in the CoVID-19 pandemic need further evaluations.

8.
Front Immunol ; 11: 2159, 2020.
Article in English | MEDLINE | ID: covidwho-776208

ABSTRACT

The rapid spread, severity, and lack of specific treatment for COVID-19 resulted in hasty drug repurposing. Conceptually, trials of antivirals were well-accepted, but twentieth century antimalarials sparked an impassioned global debate. Notwithstanding, antiviral and immunomodulatory effects of aminoquinolines have been investigated in vitro, in vivo and in clinical trials for more than 30 years. We review the mechanisms of action of (hydroxy)chloroquine on immune cells and networks and discuss promises and pitfalls in the fight against SARS-CoV-2, the agent of the COVID-19 outbreak.


Subject(s)
Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Immunologic Factors/therapeutic use , Immunomodulation , Pneumonia, Viral/drug therapy , Antimalarials/adverse effects , Antimalarials/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Repositioning/methods , Humans , Hydroxychloroquine/adverse effects , Hydroxychloroquine/pharmacology , Immunologic Factors/adverse effects , Immunologic Factors/pharmacology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL